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There are 20 questions in this paper and the total score is 100.
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Unless otherwise stated, all numbers in this paper are in decimal system.
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Each answer must be given in the form of an integer between 0 and 9999. Follow the
instructions on the answer sheet to enter the answers. You are not required to hand in your
steps of working.
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The use of calculators is not allowed.
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The diagrams in this paper are not necessarily drawn to scale.
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Note: Each answer must be given in the form of an integer between 0 and 9999. Where necessary,
the answer should be rounded off to the nearest integer in the above range. Read the instructions on
the answer sheet in detail.
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Let x be a real number. Find the maximum value of —2x* +6x . (3 marks)

2. —fELREEA 5 (EEK > mHtrhlk 1 2 5 o BRI P EUH M (EER - M E
& EEUHAYBREYGRIR O HEL S — /]S - HIEE - B %/ DREEERAY 7% © (373)

There are 5 balls in a bag, labelled 1 to 5. Now two balls are to be picked from the
bag, with the requirement that the label of the second chosen ball must be smaller
than that of the first one. How many ways are there to pick the balls? (3 marks)
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A positive integer is said to be ‘ascending’ if each digit (except the first) is larger
than the one on its left. For example, 1234 and 2357 are ‘ascending’ integers. If n
is even and is an ‘ascending’ integer greater than 2018, find the smallest possible

value of n. (3 marks)
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At most how many 2x2 squares can be placed inside a 5x5 square without
overlapping? (3 marks)
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2
If a:b=1:3 and b:c=2:5, find the value of C—b (3 marks)
a
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Let p and g be prime numbers less than 10. Find the sum of all possible values of
pxq. (4 marks)
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There are 52 cards. Each of the labels 1, 2, 3, ..., 13 appears on 4 of the cards, and
each card has exactly one label. Find the greatest possible value of n for which the
following statement holds: ‘if 13 cards are chosen at random, there must be a card
whose label is not less than n’. (4 marks)
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In AABC, ZBAC =90° and D is the foot
of perpendicular from A to BC. If
BD =12 and DC =27, find the length of o
AD. (4 marks)
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In AABC, ZABC =90°. The areas of the

semi-circles with diameters AB and BC are

9 and 12 respectively. Find the area of the —H c

semi-circle with diameter AC. ' (5 marks)
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We define ml=1x2x---xm for positive integer m. If n is a positive integer such
that (n!)! is a multiple of 10°*®, find the smallest possible value of n. (5 marks)



11.

12.

13.

14.

15.

HZ/DIETT AR LU RV 3 (B A 8 H A A FHY I EE 7

How many ways are there to choose at least 3 positive integers not exceeding 8
which are pairwise distinct?
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Let f(x)=x"*+ax®+bx*+cx+d where a, b, ¢, d are real numbers. If f(x) leaves

the same remainder of 2018 when divided by each of x+4, x-1, x+7 and x+8,
find the value of d.
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How many solutions are there to the equation cos® x°—sin® y°=1 in the range
0<x,y<5407?
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Find the sum of all real roots to the equation x*®—x*—-31x—77=0.
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The figure shows a circular swimming pool with radius 130°

12x/3_’ metres. AB is a diameter of the circle, and C is a

point on the circumference such that ZCAB =30°. Herman

plans to start from A, swim along a straight line to C, and C .
then walk along the minor arc to B. Suppose the swimming B
speed of Herman is 1 m/s and his walking speed along the
circumference is x/gﬂ' m/s. How many seconds would he

need to go from A to B?
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Let f(x)=vX>—2x+2++x>—32x+305 . If f(x) attains its minimum value
when x =a, find the value of 100a. (6 marks)
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Let a, b, p be integers such that a+b>0 and p is prime. If a®+b’—6ab=p-38,
find the sum of all possible values of p. (7 marks)
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ABCD is a trapezium with AD // BC. The two |
circles with diameters AD and BC respectively g ' ‘ 8.
meet at E and F. If EF // AD, AD=50, "‘
BC=78 and EF =30, find the area of

\\\ ///
ABCD. ~_ (7 marks)
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There were 10 questions in a test. Emily answered the questions in order, and she
got Question 1 correct and Question 2 wrong. For each subsequent question, the
probability for Emily to answer correctly is equal to the proportion of correct
answers in the previous questions. (For example, since Emily got 1 correct answer
in the first 2 questions, the probability that she could answer Question 3 correctly

is %.) Let p be the probability that Emily got exactly 5 questions out of 10

questions correct. Find the value of l. (7 marks)
p
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Let x and y be real numbers. If | x+y|>|1-xy]|, find the smallest possible value of
100| x+ Y|
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(7 marks)



