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There are 20 questions in this paper and the total score is 100.
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Unless otherwise stated, all numbers in this paper are in decimal system.
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Each answer must be given in the form of an integer between 0 and 9999. Follow the
instructions on the answer sheet to enter the answers. You are not required to hand in your
steps of working.
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The use of calculators is not allowed.
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The diagrams in this paper are not necessarily drawn to scale.
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Note: Each answer must be given in the form of an integer between 0 and 9999. Where necessary,
the answer should be rounded off to the nearest integer in the above range. Read the instructions on
the answer sheet in detail.
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A positive integer is said to be ‘ascending’ if each digit (except the first) is larger
than the one on its left. For example, 1234 and 2357 are ‘ascending’ integers. If n

is an ‘ascending’ integer greater than 2018, find the smallest possible value of n. (3 marks)
3X+ . X+3
2. Hxoy WERL B T =2 ok S i - (343)
-3y 3X—-y
Let x and y be real numbers such that Xty =—2. Find the value of X+3y . (3 marks)
X—3y 3X-y
3. 1£ AABC 1 - Bk D fl E ¥ BC L - fifif3 A
BD=DE=EC - % AABE WYHEEE 36 3K ‘
AACD HYHEITE - (373)
In AABC, points D and E lie on side BC such that
BD =DE =EC. If the area of AABE is 36, find _ ‘ . ‘
the area of AACD. B D E C (3 marks)
4. % uAE—{E 5x5 IEJTTCANANEEBMITE S/ D(E 2x2 50 ? (373)
At most how many 2x2 squares can be placed inside a 5x5 square without
overlapping? (3 marks)
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A positive integer is written on each of the 6 faces of a die (the integers can be the
same). If the integers on any two adjacent faces must be different, find the smallest
possible value of the sum of these 6 positive integers. (4 marks)
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There are 52 cards. Each of the labels 1, 2, 3, ..., 13 appears on 4 of the cards, and
each card has exactly one label. Find the smallest possible value of n for which the
following statement holds: ‘if 13 cards are chosen at random, there must be a card
whose label is not greater than n’. (4 marks)
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In AABC, ZBAC =90° and D is the foot
of perpendicular from A to BC. If
BD =12 and DC =27, find the length of o
AD. (4 marks)
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How many different triangles are there such that the length of each side is 1, 3 or 5?
(If two triangles are congruent, they are regarded to be the same triangle.) (4 marks)
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Identical regular n-sided polygons (where n>3) can be used to tessellate the
coordinate plane in a way such that there is no overlapping and no empty space
around the origin. If one of the vertices of a regular n-sided polygon lies on the
origin, find the sum of all possible values of n. (5 marks)
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We define ml=1x2x---xm for positive integer m. If n is a positive integer such
that (n!)! is a multiple of 10°**, find the smallest possible value of n. (5 marks)
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In AABC, ZABC =90°. The areas of the

semi-circles with diameters AB and BC are

9 and 12 respectively. Find the area of the —H

semi-circle with diameter AC. c (5 marks)
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There are three piles of cards. The first pile consists of 5 cards labelled 1 to 5; the
second pile consists of 4 cards labelled 1 to 4; the third pile consists of 3 cards
labelled 1 to 3. How many ways are there to choose one card from each pile so that
the labels of the three chosen cards are pairwise distinct? (5 marks)
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1) BNEEEE xRy foy)=1 BI[f(x )] =1-
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Let f(x,y)=x*—2xy+3y*. Among the following statements, find the sum of the
labels of all the true statements.

(1) Forany real numbers x and y, if f(x,y)=1, then [f(x,y)]* =1.

(2) For any real numbers x and y, if f(x,y)=-1, then [f(x,y)]? =-1.

(4) For any real numbers x and y, if f(x,y)=1, then [f(x,y)F’ =1.

(8) For any real numbers x and y, if f(x,y)=-1, then [f(x, y)]’=-1. (6 marks)
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In a sequence of real numbers, each term from the second is 1 greater than the cube
of the previous term. If the 2018th term of the sequence is 2018, find its 2016th
term correct to the nearest integer.
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There are 10 true or false questions in a test. If there are more questions whose

answer is ‘True’ than those whose answer is ‘False’, how many different
possibilities are there for the answers of this test?
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Let f(x)=vX>—2x+2++x>—32x+305 . If f(x) attains its minimum value
when x =a, find the value of 100a .
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Let m and n be positive integers. When m is expressed as a decimal, the first three
n

digits after the decimal point are (from left to right) 2, 9, 4. Find the smallest
possible value of m+n.
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In a sequence, each term is a positive integer. Starting from the third term, each

term is equal to the sum of the previous two terms. If the n-th term of the sequence
is 2018, find the greatest possible value of n.

(653)

(6 marks)
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(7 marks)
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Let a, b, p be integers such that a+b>0 and p is prime. If a®+b’—6ab=p-8,
find the sum of all possible values of p.
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In a magic show, the magician marked three distinct points A, B and C on the plane.

Then he invited an audience to mark an arbitrary point P on the same plane. Next,
the magician rotated P about A anti-clockwise by 83° to obtain the point Q, and
rotated P about B clockwise by 135° to obtain the point R. The magician could
guarantee the lengths of CQ and CR would always be the same. If ZACB =x°,
find the value of x.
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